
Rom Hacking and Legibility
In Tuesday’s workshop, we explored (and hacked) a variety of
NES cartridges. We traced Super Mario Bros. from its material
allocation on the PRG and CHR banks of its cartridge to its
playable, modifiable instantiation on a windows emulator.

The second half of the workshop offered a rich set of code
reading and code producing tools to break, tweak and explore
our super mario bros. roms. In this short probe, I’m going to
think through the affordances of writing with these tools.

We started our workship with this video of code-bending. The
asemic substitutions of ram glitching contort the game beyond
human legibility, and yet, the game still runs. to watch them
slip so casually out of domains of human understanding
inspires a sense of both awe and dread (a glimpse of
Gumbrecht’s radical perspective of contingency) – but also a
desire to understand them.

Professor Lemieux offered a couple of approaches unraveling
the game’s internal processes. First, he demonstrated ram
modification with FCEUX’s hex editor. He listed all the
addresses with a particular known value, and then isolated an
address by performing an action that would alter that value.

Moreover, he showed us how to freeze an address to make its
operation visible, and how to use a breakpoint to find out how
the game’s logic is structured. These methods function as a
close reading of the game’s processes, and in line with
Sterne’s advocacy of a sense of playfulness, an opportunity to
break them.

To chart out the technical possibility space of these tools, I
began with these small inquiries
– can I let mario jump while he’s still in the air?
– can I remove the floor?

http://residualmedia.net/165-2/
https://vimeo.com/49142543

These inquiries focalized my exploration of into two modes:
– (textual) a text editor to modify the pre-assembled game
code
– (visual) a map editor to modify the level

The textual approach allowed me to play with a number of
physics properties in short order.(they were all grouped
together in the pre-assembler). Once mario could jump in
midair, I could tweak the movement physics (gravity, jump
velocity). This kind of fine tweaking is well suited to an
efficient testing loop. “Ah, this feels too floaty”, “The
velocity is too spiky”. The ability to iterate quickly over
changes was important to me, so I spent some time developing a
workflow to do it efficiently (organizing a shortcut,
arranging windows)

After playing with the physics for a while, I moved on to the
map editor.
This had a different set of challenges:
The map editor’s GUI required a kind of prodding movement
through its options and sub-menus.
Finding anything useful was happenstance. There’s something
frustrating about the nested structure of dropdown menus that
makes it incredibly frustrating to read. Yet, there was still
a strong sense of play in exploring the arrays of obscure
options.
(and it wasn’t without its good luck – there proved to be a

simple option to remove the floor).

Play was essential to the success of the method, and going
forward this week, one of the questions I’m interested in is
the following:
If we foreground play as in our methods of inquiry, do we
occlude those artifacts that resist play?

